光声系统相关参考文献

日泰首页    应用案例    光声系统相关参考文献

[1]    W. R. Thompson et al., "Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies," Journal of biomedical optics, vol. 28, no. 3, p. 036001, 2023. doi: 10.1117/1.JBO.28.3.036001.

[2]    M. Delcroix, A. Reddy Marri, S. Parant, P. C. Gros, and M. Bouché, "Water-soluble Fe(II) complexes for theranostic application: Synthesis, photoacoustic imaging and photothermal conversion," European Journal of Inorganic Chemistry, doi: 10.1002/ejic.202300138.

[3]    S. Singh et al., "Size-tunable ICG-based contrast agent platform for targeted near-infrared photoacoustic imaging," Photoacoustics, vol. 29, p. 100437, 2023/02/01/ 2023, doi: 10.1016/j.pacs.2022.100437.

[4]    J. Kim, A. M. Yu, K. P. Kubelick, and S. Y. Emelianov, "Gold nanoparticles conjugated with DNA aptamer for photoacoustic detection of human matrix metalloproteinase-9," Photoacoustics, vol. 25, p. 100307, 2022/03/01/ 2022, doi: 10.1016/j.pacs.2021.100307.

[5]    Z. Zhao, C. B. Swartchick, and J. Chan, "Targeted contrast agents and activatable probes for photoacoustic imaging of cancer," Chem Soc Rev, vol. 51, no. 3, pp. 829-868, Feb 7 2022, doi: 10.1039/d0cs00771d.

[6]    M. D. Mokrousov et al., "Indocyanine green dye based bimodal contrast agent tested by photoacoustic/fluorescence tomography setup," Biomedical optics express, vol. 12, no. 6, p. 3181, 2021, doi: 10.1364/boe.419461.

[7]    M. R. Chetyrkina et al., "Carbon Nanotube Microscale Fiber Grid as an Advanced Calibration System for Multispectral Optoacoustic Imaging," ACS Photonics, vol. 9, no. 10, pp. 3429-3439, 2022/10/19 2022, doi: 10.1021/acsphotonics.2c01074.

[8]    V. D. Vincely et al., Biodegradable and biocompatible semiconductor nanocrystals as NIR-II photoacoustic imaging contrast agents (SPIE BiOS). SPIE, 2023.

[9]    V. D. Vincely and C. L. Bayer, "Functional photoacoustic imaging for placental monitoring: A mini review," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1-1, 2023, doi: 10.1109/tuffc.2023.3263361.

[10]  K. Huda, D. Lawrence, S. Lindsey, and C. Bayer, Photoacoustic tomography to assess acute vasoactivity of systemic vasculature (SPIE BiOS). SPIE, 2022.

[11]  W. Thompson et al., A preclinical small animal imaging platform combining multi-angle photoacoustic and fluorescence projections into co-registered 3D maps (SPIE BiOS). SPIE, 2020.

[12]  K. Huda, C. Wu, J. G. Sider, and C. L. Bayer, "Spherical-view photoacoustic tomography for monitoring in vivo placental function," Photoacoustics, p. 100209, 2020, doi: 10.1016/j.pacs.2020.100209.

[13]  A. Juronis and M. Jašinskas, "Breakthrough instruments and products PhotoSonus M+ laser for photoacoustic imaging," Review of Scientific Instruments, vol. 92, no. 5, p. 059502, 2021, doi: 10.1063/5.0053559.

[14]  D. Dumani et al., Preclinical small animal imaging platform providing co-registered 3D maps of photoacoustic response and fluorescence (SPIE BiOS). SPIE, 2019.

[15]  D. Dumani et al., Co-registered photoacoustic and fluorescent imaging of a switchable nanoprobe based on J-aggregates of indocyanine green (SPIE BiOS). SPIE, 2018.

[16]  E. M. Donnelly, K. P. Kubelick, D. S. Dumani, and S. Y. Emelianov, "Photoacoustic Image-Guided Delivery of Plasmonic-Nanoparticle-Labeled Mesenchymal Stem Cells to the Spinal Cord," Nano Letters, vol. 18, no. 10, pp. 6625-6632, 2018/10/10 2018, doi: 10.1021/acs.nanolett.8b03305.

[17]  H. P. Brecht, V. Ivanov, D. Dumani, S. Emelianov, M. Anastasio, and S. Ermilov, A 3D imaging system integrating photoacoustic and fluorescence orthogonal projections for anatomical, functional and molecular assessment of rodent models (SPIE BiOS). SPIE, 2018.

2024-03-01
浏览量:0